Surface Modification of Neural Electrode with Electrodeposited Nanoparticles for Stimulation Performance Enhancement

2019. 09. 23.

YONG-HEE KIM & SANG-DON JUNG

Application Potentials

Applications for neurological disorders

Multi-electrode Array (MEA)

- Definition
 - MEAs or microelectrode arrays are devices that contain multiple micro plates
 - Extracellular recording & stimulation
 - 1st MEA by Thomas Jr. (1972) & commercialized by Multi-Channel Systems[®] (1996)
- Application potential

Specifications

Requirements for neural-computer bi-directional interface

Extracellular Recording & Stimulation

Recording issue

- Impedance control for reduction of interfacial noise

 $N_{e.e} = \sqrt{4 \ k \ T \ Re(Z_e') \ \Delta f}$ $Z_e' \propto 1 \ / \ A_s^2$

Stimulation

- Charge storage capacitance
- Charge injection limit
 - Electrochemical window: -0.64 ~ 0.75 V (vs. SCE)*
 - Safety limit: ~ 1 mC cm⁻² **
- Material dependence
- Common requirement
 - Increase in surface area
- Long-term reliability issues

Nanomaterials for surface modification

Primary neuronal cell culture

SD rat

Synapse Devices Creative Research Section

Electrode Materials for Neural Interface

Five criteria*

- Tissue response
- Allergic response
- Electrode-tissue impedance
- Charge injection capability
- Radiographic visibility

Metals

- List of biocompatible metals
 - Au, Pt, Pt-Ir, stainless steel, Pd, W, Pt-Rh, Cr-Mo, Au-Ni-Cr, Au-W, Ti, IrOx,
- List of improper metals
 - Fe, Cu, Ag, Co, Zn, Mg, Mn, Al, Bi, Cd, Ni
- Hierarchy of allergenic metals
 - Be > Hg > Cu > Au > Ag
- Best candidates as implants
 - Au, Pt, W, Rh, Pd, Ti
- Choice for stimulating electrodes
 - Pt, Pt-Ir, Au, W, Rh

Non-metals

- Organic materials
 - CNT, conducting polymers
- Inorganic materials
 - ITO, IrOx,

Nanostructures

- Nanoparticles
- Nanorods
- Nanowires
- Nanoflakes
- Nanoporous structures

Synapse Devices Creative Research Section

Fabrication of MEA

Bi-layer lift-off resist technique

- Lift-off resist + Negative photoresist + Sputter deposition of SiO₂

ETRI

Excellent uniformity in impedance

Y.H. Kim et al., Fabrication of multi-electrode array platforms for neuronal interfacing with bi-layer lift-off resist sputter deposition, J. Micromech. Microeng. 23, 097001 (2013)

Y.H. Kim et al., Optimization of bi-layer structure formation and SiO_2 sputter-deposition process for fabrication of gold multi-electrode array, RSC Advances 5, 6675 (2015)

Electrodeposition of metallic nanoparticles

Typical 3-electrode configuration

– MEA electrode (working), Pt foil (counter), Ag AgCl (reference)

Electrochemical characterization

- Electrodeposition
- Electrochemical impedance spectroscopy (EIS)
- C-V
- voltage transient

Modification with nanoporous Au (NPG)

ETRI

Cont'd

- Cathodic charge storage capacitance (cCSC) vs. charge injection limit
- Derived from voltage transient measurement
- Water window, -0.6 V

Material	cCSC (mC/cm²)	Charge injection limit (mC/cm ²)	Efficiency (CIL/cCSC)
Pt		0.1-0.35, 0.05- 0.15	
Au	0.27		
Pt black	16		
TiN		0.87	
PEDOT		2.3±0.6	
Roughed Pt	>8.9	1.0	
CNT	1.6	1-1.6	
EIROF	23.54 , 16, 25	1.27	0.054
SIROF	36.15, 54, 31.5±6.6	2-3, 4.6±1	0.13
NPG	1.0	0.98	~1
IrOx/NPG	8.8	2.3	0.26

 The charge injection limit is defined as the maximum quantity of charge that an electrode can inject before reaching the water electrolysis potential

Stimulation performance

Synapse Devices Creative Research Section

ETRI

Durability test

- Excellent mechanical durability
- Some MEA manufacturers recommend 'Do not apply sonication'
- 8 hours a day, 25th day of use
- Excellent anti-corrosion ability ?

Synapse Devices Creative Research Section

NEXT

- Mushroom-type MEA for slice tissue interfacing
- LOR passivation + electro-co-deposition of Ag:Au alloy

64 & 128 CH MEA System

- FPGA-based 128 CH bi-directional MEA system MEA V6.6) TOIDSAND Analog front-end • 128 channel recording (4.16 MSamples/s) 128 MEA SYSTEM · Real-time online spike sorting (feature learning & extraction capability)
- 8 channel arbitrary voltage and current stimulation

J. Park et al., A 128 channel FPGA-based Real Time Spike Sorting Bidirectional Closed-loop Neural Interface System, IEEE Transactions on Neural Systems & Rehabilitation Engineering, Vol. 25, 2227-2238 (2017).

All metal-oxide-based MEAs

Fabrication of flexible electrode

- Fluoropolymer-based flexible electrode
 - Fluorinated ethylene propylene (FEP): m. p. ; Tg
 - FEP plasma treatment and thermal pressing beyond the meting temperature
 - Solely composed of FEP and Au without adhesion metal

Y.H. Kim et al., Fluoropolymer-based flexible neural prosthetic electrodes for reliable neural interfacing, ACS Appl. Mater Interfaces, Vol. 9,43420-43428 (2017).

ETRI

16-CH ECoG electrode array

THANK YOU FOR ATTENTION!